Klusterisasi Penyandang Masalah Kesejahteraan Sosial (PMKS) Di Kabupaten Bojonegoro Menggunakan Algoritma K-Medoids
نویسندگان
چکیده
Persons with Social Welfare Problems (PMKS) are individuals, community groups, or families who cannot adequately and properly meet their economic, physical, mental, social needs, both spiritually physically, because of an obstacle, difficulty, disturbance. This study aimed to classify sub-districts in Bojonegoro Regency based on the level welfare problems using K-Medoids Clustering (PAM) Analysis method. There 2 clusters formed Average Silhouette 0.73. Cluster 1 is a sub-district group common problems, high problems. Each silhouette value cluster 0.74 0.70 specifications well-formed strong structure.
منابع مشابه
Why Don't Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior
Masalah Begitu banyak kemajuan telah terjadi pada kemampuan perangkat keras maupun perangkat lunak untuk membantu kehidupan manusia. Meskipun begitu, masih banyak sekali masalah sistem yang tidak digunakan dengan maksimal. Oleh karena itu, salah satu isu yang sangat penting adalah bagaimana cara untuk mengerti kondisi-kondisi di mana sistem informasi diterima atau tidak diterima di dalam suatu ...
متن کاملSistem Informasi Pengarsipan Menggunakan Algoritma Levensthein String pada Kecamatan Seberang Ulu II
Archival information systems in government agency is one of the most used applications for daily acitivities. One feature in application management information document is searching. This feature serves to search for documents from a collection of available information based on keywords entered by the user. But some researches on a search engine (searching) concluded that the average user error...
متن کاملDocument Clustering using K-Medoids
People are always in search of matters for which they are prone to use internet, but again it has huge assemblage of data due to which it becomes difficult for the reader to get the most accurate data. To make it easier for people to gather accurate data, similar information has to be clustered at one place. There are many algorithms used for clustering of relevant information in one platform. ...
متن کاملK-Medoids For K-Means Seeding
We run experiments showing that algorithm clarans (Ng et al., 2005) finds better Kmedoids solutions than the standard algorithm. This finding, along with the similarity between the standard K-medoids and K-means algorithms, suggests that clarans may be an effective K-means initializer. We show that this is the case, with clarans outperforming other popular seeding algorithms on 23/23 datasets w...
متن کاملColour image segmentation using K – Medoids Clustering
K – medoids clustering is used as a tool for clustering color space based on the distance criterion. This paper presents a color image segmentation method which divides colour space into clusters. Through this paper, using various colour images, we will try to prove that K – Medoids converges to approximate the optimal solution based on this criteria theoretically as well as experimentally. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kubik: Jurnal Publikasi Ilmiah Matematika
سال: 2023
ISSN: ['2686-0341', '2338-0896']
DOI: https://doi.org/10.15575/kubik.v7i2.21653